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Abstract 

This study investigated the practicality of using multivariate statistical analysis for the development of a 
portfolio for crypto assets. The algorithm used in this experiment is an iterative process of creating 
1,000 unique portfolios and returning the optimal set of solutions. The model considers the varying risk 
preferences of investors and returns the leading portfolio from each of the five risk levels. Because of 
the randomness occurring at each iteration, we conducted a series of tests to obtain the range of 
expected return and drawdown of portfolios at each risk level. After 20 trials, we observed that the 
drawdown over the past 12 months ranged between -59.40% and -49.28%, with the average drawdown 
equal to -53.50%. The historical 1-year return showed larger deviations, ranging between +66.76% and 
+197.08%, with average return of +116.97%. Peak return ranged between +155.93% and +386.93%, with 
average return of +250.78%. Observations show that there is more variability among 1-year and peak 
returns, while drawdown is generally consistent for all risk levels. The results of this study suggest that 
increasing volatility tends to amplify the magnitude of a portfolio’s positive return but does not have a 
significant impact during periods of decline. 

 

Introduction 

This research report outlines the design approaches and methods used for implementing the 
cryptocurrency portfolio builder tool. There will be a brief explanation on the foundation of our research 
on risk analysis and portfolio diversification. Following the background, the algorithm design will go 
through a summarized flow of the entire process, starting with data gathering and ending on how the 
output of the algorithm will be presented to the user. The implementation section of the report contains 
a step-by-step walkthrough of the program and the techniques used for statistical analysis and data 
transformation. The report will be concluded by a visualization of the comparison between various 
portfolios and a discussion on the feasibility and efficiency of the presented algorithm. 

 

Background 

The fundamental basis of the solution utilizes modern portfolio theory (MPT), a mathematical algorithm 
that seeks to maximize the return of an investment portfolio with minimal risk. MPT was initially 
introduced in 1952 by American economist Harry Markowitz and has been widely used ever since due to 
its flexibility with balancing various portfolio asset types and interpretability of risk analysis. 

MPT, also known as mean-variance analysis, analyzes the expected return and standard deviation of 
portfolios using historical data of the assets included. It allows investment decisions to be made by 
considering the risk and return of each portfolio and choosing on the optimal solution. 

From a pool of over 10,000 assets, we use a ranking model that considers not only the historical returns 
of assets, but also the technology stack, general sentiment, market adoption, asset performance, and 
liquidity to rank and pick the candidates. The following experiment uses multivariate mean-variance 
analysis to analyze the historical daily returns and the interrelationship between 17 crypto assets that 
are currently the most highly rated on the ranking system. Namely, this study will analyze and generate 
a diversified portfolio of Aave (AAVE), Cardano(ADA), Axie Infinity (AXS), Bitcoin (BTC), Curve DAO Token 
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(CRV), Polkadot (DOT), Ethereum (ETH), FTX Token (FTT), Kyber Network Crystal v2 (KNC), Chainlink 
(LINK), Litecoin (LTC), Polygon (MATIC), The Sandbox (SAND), Uniswap (UNI), Stellar (XLM), XRP (XRP), 
and Tezos (XTZ). 

 

Figure 1. Historical Prices of Crypto Assets 

 

 

Figure 2. Historical Daily Returns of Crypto Assets 

 

Algorithm Design 

The algorithm is designed with a focus on efficiency and simplicity. However, it is effective in 
determining the expected return and volatility of each portfolio. The initial step is to obtain the daily 
closing prices of each asset and aggregating the values to get monthly returns. We have set a monthly 
geometric decay of 5% to put more weight on recent data. Figure 2 is an overview of the past several 
years of daily returns for each of the 17 assets. The primary reason for putting less weight on older data 
is in consideration of the declining volatility and stabilizing conditions of the crypto market. However, it 
is important to note that fundamentals may change at any point and require a modification of the 
current model. 
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The weighted average return for each asset is obtained and used to derive additional measures such as 
standard deviation, correlation, and covariance. These measures are used as intermediate steps of the 
process of calculating expected portfolio return and standard deviation, which are the two attributes of 
a given portfolio that allow us to determine optimality. 

Obtaining the optimal portfolio requires an iterative process through random number generation. 
Through a series of tests, we have decided to set the number of generated portfolios to 1000, in 
consideration of runtime. Our algorithm uses random numbers to produce allocation weights of assets 
in each iteration. In other words, a unique portfolio is created in every iteration. The unique weights of 
each portfolio’s assets are then used to determine the associated risk and expected return of the 
portfolio. 

One important point to consider is a specific user’s risk tolerance. A risk-averse investor will likely favour 
a portfolio with minimal risk even though its expected return is comparably low. On the other hand, a 
risk-tolerant investor may prefer an aggressive portfolio with high risk and high return. Taking this into 
account, we have decided to implement risk buckets that are separated by volatility ranges. Following 
the iterations, the randomly generated portfolios are assigned to one of the five risk buckets based on 
portfolio standard deviation. 

The last step of the algorithm is the decision-making process. For each risk bucket, we obtain the Sharpe 
ratios of each portfolio within. The Sharpe ratio is a type of measurement using the excess return of an 
investment and the underlying volatility, indicating the relative performance of the given portfolio. The 
portfolios are then ranked based on Sharpe ratio in descending order to rearrange the choices in each 
bucket. Finally, the top portfolio in each risk bucket is selected as the optimal solution for the given risk 
level. On the application interface, the user will be suggested with one of the five portfolios depending 
on his or her risk preference. 

 

Implementation 

A custom function is used to fetch the daily closing prices of all the assets. The resulting data frames is 
concatenated into one single data frame to be used for the remainder of the algorithm. 

years = 5 

start = datetime.today() - relativedelta(years=years) 

dfs = [] 

for x in assets: 

  try: 

    dfs.append(ohlcv(start, x, '1d')) 

  except: 

    pass 

data = pd.concat(dfs, axis=1) 

data = data.reindex(sorted(data.columns), axis=1) 

data = data[:-1]  
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Figure 3. Recent Closing Prices of Assets 

 

With the closing prices saved to the data frame, the daily and monthly returns are calculated with the 
respective decay rates. 

# Monthly decay rate 

m_decay_rate = 0.05 

 

# Get number of months since start_date 

def get_months(start_date): 

  end_date = date.today() 

  years = end_date.year - start_date.year 

  months = end_date.month - start_date.month 

  return years * 12 + months 

 

monthly_closes = data.resample('M').last() # Resample daily returns to monthly 

monthly_returns = monthly_closes.pct_change() # Monthly returns 

monthly_returns = monthly_returns.apply(lambda x: x * (1-

m_decay_rate) ** get_months(x.name), axis=1) # Monthly returns with decay  

 

 

Figure 4. Recent Monthly Returns 
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There are two methods of determining the monthly standard deviation of a portfolio. The first method 
uses daily returns to initially obtain the daily standard deviation and then scale and transform the result 
into monthly standard deviation. The second method uses monthly returns to directly calculate the 
monthly standard deviation. To improve the accuracy and precision of standard deviation estimations, 
the first method is chosen. 

# Daily decay rate 

d_decay_rate = 1 - (1-m_decay_rate)**(1/30) 

 

# Get number of days since start_date 

def get_days(start_date): 

  end_date = date.today() 

  diff = end_date - start_date.date() 

  return diff.days 

 

daily_returns = data.pct_change() # Daily returns 

daily_returns = daily_returns.apply(lambda x: x * (1-d_de-

cay_rate) ** get_days(x.name), axis=1) # Daily returns with decay  

 

 

Figure 5. Recent Daily Returns 

 

The following code snippet uses the information on daily and monthly returns to generate the weighted 
average monthly return and monthly standard deviation of all 17 assets. Using these two values and a 
risk-free rate of 0.1%, the Sharpe ratio can be determined. 

 

Monthly Standard Deviation (30-day approximation): 

𝜎 =
∑(𝑥 − 𝜇)

𝑁
∙ √30 

𝑥 = Individual daily return 

𝜇 = Average daily return 
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𝑁 = Number of data points 

 

Sharpe Ratio: 

𝑆 =
𝐸[𝑅 − 𝑅 ]

𝜎
 

 

𝑅 = Portfolio return 

𝑅 = Risk-free rate 

𝜎 = Standard deviation of portfolio 

 

avg_return = monthly_returns.mean() # Average monthly return  

std_dev = daily_returns.std()*np.sqrt(30) # Monthly standard deviation 

 

risk_free_rate = 0.001 # risk-free rate (0.1%) 

 

ret_vol_sr = pd.concat([avg_return, std_dev], axis=1) 

ret_vol_sr.columns = ['return','volatility'] 

ret_vol_sr['sharpe_ratio'] = ret_vol_sr.apply(lambda x: (x['return'] - risk_free_rate)

/x['volatility'], axis=1) # Calculate Sharpe ratio 

ret_vol_sr = ret_vol_sr.applymap(lambda x: round(x,6))  
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Figure 6. Weighted Return, Volatility, and Sharpe Ratio of All Assets 

 

To begin the iterations, there is one more piece of information that is required. The covariance matrix 
allows us to calculate portfolio variance. It will be used in conjunction with randomly generated weights 
on each iteration. 

 

Covariance: 

𝐶𝑜𝑣(𝑋, 𝑌) =
∑(𝑋 − 𝑋)(𝑌 − 𝑌)

𝑁
 

𝑋 = Individual return of asset X 

𝑋 = Average return of asset X 

𝑌 = Individual return of asset Y 

𝑌 = Average return of asset Y 

𝑁 = Number of data points 
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cov_matrix = daily_returns.cov()  

 

 

Figure 7. Covariance Matrix of Assets 

 

Portfolio variance: 

𝜎 = 𝑤 𝑤 𝐶𝑜𝑣(𝑎 , 𝑎 ) 

𝑤 = Weight of Asset i 

𝑎 = Asset i 

 

Before running the iterations, we first initialize empty lists to store the associated measures for each 
portfolio created in the loop. 

port_weights = [] # Asset weights 
port_returns = [] # Portfolio return 
port_std_dev = [] # Portfolio standard deviation 
port_sharpe_ratio = [] # Portfolio Sharpe ratio 
 

num_ports = 1000 # Number of iterations  

 

Data preparation is now complete and the algorithm now proceeds to the iteration stage. 
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for port in range(num_ports): 

  weights = np.random.random(len(assets)) # Generate 10 random numbers between 0 and 1 

  weights = weights/np.sum(weights) # Divide each random number by sum to make 100% co

mposition 

  port_weights.append(weights) 

 

  curr_return = np.dot(weights, avg_return) # Portfolio average return 

  port_returns.append(curr_return) 

 

  var = cov_matrix.mul(weights, axis=0).mul(weights, axis=1).sum().sum() # Portfolio v

ariance 

  std_dev = np.sqrt(var) * np.sqrt(30) # Portfolio standard deviation 

  port_std_dev.append(std_dev) 

 

  sharpe_ratio = (curr_return - risk_free_rate)/std_dev # Portfolio Sharpe ratio 

  port_sharpe_ratio.append(sharpe_ratio)  

 

The results are concatenated into one large data frame as shown below. Each row displays the precise 
allocations for each asset, as well as the portfolio’s expected return, volatility, and Sharpe ratio. 

df = pd.DataFrame(port_weights, columns=assets) 

df['return'] = port_returns 

df['volatility'] = port_std_dev 

df['sharpe_ratio'] = port_sharpe_ratio 

df = df.applymap(lambda x: round(x, 6))  

 

 

Figure 8. Portfolio Allocations, Expected Return, Volatility, and Sharpe Ratio 

 

The following scatterplot shows the distribution of the randomly generated portfolios across varying 
ranges of standard deviation and expected return on the monthly scale. 
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Figure 9. Risk vs. Return (Monthly Standard Deviation vs. Expected Return) 

 

The default number of risk buckets that we have chosen is 5. Portfolios are ordered in ascending 
standard deviation and evenly distributed among the five risk buckets. 

num_buckets = 5 

df_sorted = df.sort_values(by=['volatility']) # Sort portfolios in increasing order of

 standard deviation 

risk_buckets = np.array_split(df_sorted, num_buckets) # Split into 5 risk buckets  

 

From each bucket, we pick out the portfolio with the highest Sharpe ratio and store other details about 
the assets that make up the portfolio such as allocation and expected return. 

portfolios = [] # Store for top portfolios in each bucket 
 

for i in range(num_buckets): 
  bucket_df = risk_buckets[i] 

  max_sr = bucket_df.loc[bucket_df['sharpe_ratio'].idxmax()] # Max Sharpe ratio 
 

  assets_info = [] 

 

  # Asset Information 
  for a in assets: 
    assets_info.append({ 

      'asset': a, 
      'allocation': max_sr[a], 
      'return': ret_vol_sr['return'][a], 
      'volatility': ret_vol_sr['volatility'][a], 
      'sharpe_ratio': ret_vol_sr['sharpe_ratio'][a] 
    })  
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  # Portfolio Information 
  obj = { 

    "risk_level": i+1, 
    "portfolio": { 
      "return": max_sr['return'], 
      "volatility": max_sr['volatility'], 
      "sharpe_ratio": max_sr['sharpe_ratio'] 
    }, 

    "assets": assets_info 
  } 

 

  portfolios.append(obj)  

 

The details of each portfolio suggestion are summarized into a table below. 

result = pd.DataFrame(columns=['return','volatility','sharpe_ratio']) 

for i in range(num_buckets): 

  bucket_port = portfolios[i]['portfolio'] 

  result = result.append({ 

      'return': bucket_port['return'], 

      'volatility': bucket_port['volatility'], 

      'sharpe_ratio': bucket_port['sharpe_ratio'], 

  }, ignore_index=True) 

result.index.name = 'Risk Level' 

result.index += 1  

 

 

Figure 10. Summary of Leading Portfolios 
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Results 

The results table from Figure 10 is extended to show the exact allocations of assets in each portfolio. 
Figure 11 shows the complete information that will be used on the application interface to provide users 
with details of the portfolio of interest. 

result_cols = assets + ['return','volatility','sharpe_ratio'] 

result = pd.DataFrame(columns=result_cols) 

for i in range(num_buckets): 

  bucket = portfolios[i] 

  bucket_port = bucket['portfolio'] 

  allocations = [x['allocation'] for x in portfolios[i]['assets']] + [bucket_port['ret

urn'], bucket_port['volatility'], bucket_port['sharpe_ratio']] 

  result.loc[len(result)] = allocations 

result.index.name = 'Risk Level' 

result.index += 1  

 

 

Figure 11. Optimal Portfolios with Asset Allocations 

 

The first observation is an important point to consider when comparing portfolios. Return seems to hold 
a strong positive correlation with volatility. This makes it difficult to choose because of the risk-reward 
trade-off that is set in place. Having access to the Sharpe ratios suggests one way to decide between 
several different portfolios. The decision that an investor makes will ultimately depend on his or her risk 
tolerance and investment goals. Another observation of the data frame above is the varying 
composition of assets in each portfolio. Assets like BTC and ETH are known to be less volatile than assets 
like LTC and SAND. Assets with low volatility tend to hold more weight in low-risk portfolios than assets 
with high volatility. In high-risk portfolios, assets with high volatility appear to take more space. This is a 
natural consequence and a direct connection of the risk-reward trade-off mentioned above. 

To gain more insight from our results, we decided to modify our results for a comparison with a 
benchmark in broader markets such as the S&P 500 index. 
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start = datetime.today()-relativedelta(years=1, days=2) # Analyze 1-year histori-

cal data 

end = datetime.today() 

 

sp500 = web.DataReader(['sp500'], 'fred', start, end) 

sp500 = sp500.pct_change() # Daily returns 

 

performances = [sp500] # Track performances  

data_hist = data[data.index > start].pct_change() # Crypto assets historical prices 

 

for ind, p in enumerate(portfolios): 

  p_assets = p['assets'] 

  p_weights = [x['allocation'] for x in p_assets] 

 

  dcopy = data_hist.copy() 

 

  for i, col in enumerate(dcopy.columns): 

    dcopy[col] = dcopy[col].apply(lambda x: x*p_weights[i]) 

 

  dcopy['risk_level_'+str(ind+1)] = dcopy.apply(lambda x: np.nansum(x)/sum([y if not m

ath.isnan(float(x[i])) else 0 for (i, y) in enumerate(p_weights)]), axis=1) 

 

  performances.append(dcopy['risk_level_'+str(ind+1)]) 

 

index_ports_returns = pd.concat(performances, axis=1)  

 

Figure 12. Daily Returns of S&P 500 and Portfolios (03/18/2021 – 03/18/2022) 
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A starting balance of $10,000 is used to transform the daily returns into account balances. The historical 
performance tracks the price changes of the S&P 500 index alongside all five portfolios starting from 
March 18, 2021 and ending on March 18, 2022. Using daily returns, the closing balance at the end of 
each day is calculated in succession as seen below. 

index_ports_returns.iloc[0] = 10000 # Starting balance 

for enum, z in enumerate(index_ports_returns.columns): 

  for i in range(1, len(index_ports_returns)): 

    if np.isnan(index_ports_returns.iloc[i,enum]): 

      index_ports_returns.iloc[i,enum] = index_ports_returns.iloc[i-

1,enum] # Take previous day balance if no data 

    else:  

      index_ports_returns.iloc[i,enum] = index_ports_returns.iloc[i-

1,enum] * (1+index_ports_returns.iloc[i,enum]) 

 

index_ports_returns = index_ports_returns.applymap(lambda x: round(x, 2))  

 

 

Figure 13. Historical Performance With $10,000 Initial Balance 

 

The data points from Figure 13 are plotted as shown. As expected, aggressive portfolios like Risk Level 4 
and Risk Level 5 outperformed the other portfolios for most sessions over the past 12 months. In 
periods of high inflow and positive uptrend, the relative performance of these aggressive portfolios is 
much greater. However, the drawdown on these portfolios is typically worse during periods of decline. 
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Figure 14. Historical Performance Comparison 

 

Testing 

We ran a series of tests to confirm our assumptions of the relationship between volatility and return of 
portfolios. Figure 15 displays the complete set of results for each of the five risk levels over 20 iterations. 
For each iteration, we calculated the 1-year return, peak return, and drawdown for the corresponding 
portfolio in each risk bucket. The 1-year return is calculated by the percentage change between the 
starting and ending balances. The peak return is equal to the percentage change at the day of maximum 
portfolio balance. The drawdown column refers to the largest peak-to-trough decline in percentage over 
the observed past year. 

 

 

Figure 15. Test run statistics 
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Figure 16 shows a compiled and more comprehensive view of the test runs. One observation that can be 
made is the strictly increasing values of 1-year returns as risk level is increased. This is not taken by 
surprise because portfolios that are known to carry more risk tend to offer potentially higher return. The 
peak returns also show similar trends of increasing return. These values suggest the possible range of 
price movements on the upside over the past year. The drawdown, on the other hand, shows the 
possible change in the value of an investment. For each risk level, the decline appears to be in a tighter 
range compared to return. This outcome is generally ideal for an investor because it means that the 
downside of a risky portfolio is not as significant over the long run. The average drawdown of Risk Level 
3 is -52.93%, meaning that the average peak-to-trough decline is less than the drawdowns of Risk Levels 
1 and 2. This may entirely be a coincidence given the small difference between the values. However, it is 
important to keep note of this observation as it raises the question of whether a low-risk portfolio is 
always the safest option. 

 

 

Figure 16. Compiled statistics 

 

Conclusion 

The MPT algorithm is an effective approach of analyzing the risk and return associated with a given 
portfolio. It relies on calculations using historical data and is flexible with the study timeframe and risk 
measure types. For the problem that we are attempting to solve, which mainly concerns the 
development of a balanced portfolio of crypto assets, the current model is suitable. This is because the 
directional movement of assets in the crypto market has a strong positive correlation. In other words, it 
is not common for two portfolios to behave differently in terms of direction. As shown in Figure 14, all 
five portfolios display similar trends, only differentiating in magnitude. 

There are some disadvantages to the current model. First, there is no regard for forecasting in the 
algorithm design. One of the ways an investor makes investment decisions is to look at a particular asset 
and choosing to buy, hold, or sell it based on its current state and an approximate prediction on its 
future price. By only using historical returns as the main source of data, it is not possible to make any 
statement on what will happen to a basket of assets within the next few months or years. Another 
problem with the current model is its inflexibility with varying investment time horizons. Because our 
algorithm currently uses monthly returns, it is most appropriate to use as a decision support tool for 
medium to long-term investors. 

This research used mean-variance analysis on the historical data of crypto assets to produce multiple 
portfolios for various risk tolerance levels. The current baseline model provides well-diversified 
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investment ideas for all types of investors. The results generated are strongly supported by a sturdy 
mathematical model of multivariate analysis. There are ideas such as the points described above that 
will help to solidify the algorithm even further and allow expansion of our platform to offer a wider 
variety of features to investors. 
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